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A uni�ed multigrid solution technique is presented for solving the Euler and Reynolds-
averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting
of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms and
tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea,
the contribution of the paper lies in the formulation of a complete solution technique which
can handle structured grids, block structured grids, and unstructured grids of tetrahedra or
mixed elements without any modi�cation. This is achieved by discretizing the full Navier-
Stokes equations on tetrahedral elements, and the thin layer version of these equations on
other types of elements, while using a single edge-based data-structure to construct the dis-
cretization over all element types. An agglomeration multigrid algorithm, which naturally
handles meshes of any types of elements, is employed to accelerate convergence. An auto-
matic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by
merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements
is also described. The gains in computational e�ciency a�orded by the use of non-simplicial
meshes over fully tetrahedral meshes are demonstrated through several examples.
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1 Introduction

Over the last decade, unstructured mesh techniques have gained popularity due to the 
ex-
ibility they a�ord in dealing with complex geometries. However, a major drawback of such
techniques remains their lower e�ciency and resulting increased computational overheads as
compared to structured mesh techniques.

This lower computational e�ciency is due to several factors. The most obvious of these is
the requirement of explicitly storing the connectivity of the mesh and accessing memory loca-
tions through indirect addressing. The di�culties associated with constructing sophisticated
implicit or multigrid solution procedures for unstructured meshes have resulted in widespread
use of simple algorithms such as explicit time-stepping, which generally results in ine�cient
solution procedures. Finally, the use of simplicial meshes (triangles in two dimensions and
tetrahedra in three dimensions) often results in discretizations which are considerably more
expensive to evaluate than what may be achieved using quadrilateral/hexahedral structured
or block-structured meshes, both in terms of the required number of mesh points and the
connectivity between the mesh points.

While the indirect addressing overheads cannot be avoided in an unstructured mesh
technique, the overheads associated with most other factors can be overcome, or at least
minimized. Indeed, multigrid techniques for unstructured meshes have been demonstrated
both in two dimensions and in three dimensions for the Euler and the Navier-Stokes equations
by several authors [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Unstructured multigrid methods are capable of
delivering convergence rates for steady-state problems which are competitive with the best
structured-grid multigrid solvers available, on a per cycle basis.

Thus, the most promising area for further increasing the overall e�ciency of unstructured
mesh techniques is to decrease the cost of the discretization itself. The additional cost
incurred by the use of simplicial meshes can be demonstrated by considering a structured
hexahedral mesh of N vertices. For a vertex-based �nite-volume scheme, which results in
a nearest neighbor stencil, there are N unknowns and 3N 
uxes which must be evaluated.
(For nearest neighbor stencils, the number of 
uxes to be evaluated is given by the number
of edges in the mesh, which asymptotically tends to 3N for a hexahedral mesh, neglecting
boundary e�ects). If this hexahedral mesh is now subdivided into a tetrahedral mesh (by
dividing each hexahedron into 6 tetrahedra), the equivalent �nite-volume scheme consists
of N unknowns, as previously, but the evaluation of 7N 
uxes is now required to construct
the discretization (since the number of edges in a tetrahedral mesh tends to the number
of vertices plus the number of tetrahedra, neglecting boundary e�ects). Thus, for a given
distribution of vertices, a tetrahedral mesh discretization is roughly twice as expensive to
evaluate as a hexahedral mesh discretization.

Another di�culty associated with simplicial meshes is their isotropic nature. The very
fact that triangular and tetrahedral elements do not exhibit any preferred direction is what
makes them ideal for discretizing arbitrarily complex con�gurations. In fact, most unstruc-
tured mesh generation techniques rely on this property. However, when a con�guration with
a preferred direction is to be discretized, and di�erent resolutions in the various directions
are desired, unstructured mesh generation techniques are generally known to experience
great di�culty in robustly delivering the di�erent desired directional resolutions. Consider,
for example, a high aspect-ratio wing geometry. Wing geometries require high resolution
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near their leading and trailing edges. When using an isotropic unstructured mesh, the high
leading and trailing edge resolution requirements also result in high spanwise resolutions
in these areas, which greatly increase the number of grid points. This degree of spanwise
resolution is unnecessary, since the spanwise gradients are known by design to be relatively
small. Similar di�culties occur in the boundary layer regions near a wall for high-Reynolds
number viscous 
ows, where the normal gradients are several orders of magnitude greater
than the streamwise gradients.

The generation of stretched unstructured meshes has been pursued to alleviate this prob-
lem, both in two and three dimensions. However, in hindsight, it is apparent that all of these
methods introduce some degree of structure into the stretched mesh regions, either simply
as a result of the overall algorithm [11, 12], or by design [13, 14, 15, 16, 17]. For example, it
is well known that for a stretched two-dimensional triangulation, obtuse triangles must be
avoided due to the poor approximation accuracy which they a�ord [18]. Since the sum of
the three angles in a triangle must be equal to 180 degrees, the only permissible stretched
triangles are those with one small angle, and two angles which are close to 90 degrees. Hence,
nearly right angle triangles are required in the highly stretched regions of the mesh. It is
then a simple matter to see that any set of right angle triangles which tessellate a domain can
be grouped into a set of quadrilaterals, simply by identifying and removing the appropriate
diagonal edges. A local mesh structure can therefore always be identi�ed in such regions. In
fact, three dimensional stretched unstructured meshes are often derived from local structured
or semi-structured meshes of hexahedral or prismatic elements, which are then subdivided
into tetrahedral elements.

In addition to the increased complexity of simplicial meshes, recent two-dimensional
experiments have suggested that upwind �nite-volume discretizations may su�er an accuracy
degradation on stretched right-angle triangular meshes [19], due to the irregular shape of the
resulting median-dual control volume. In fact, the use of a containment-circle based dual
control volume, which de-emphasizes the contributions of the diagonal edges in such meshes
has been proposed [20].

Rather than simply de-emphasizing such edges, we may choose to remove them altogether,
thus forming quadrilaterals out of pairs of triangular elements in two-dimensions, or prisms,
pyramids and hexahedra out of groups of tetrahedra in three dimensions. The goal is to
reduce the cost of the discretization as much as possible by switching to such types of elements
in regions of high grid stretching. The idea of using mixed elements in an unstructured
mesh technique is by no means novel, and has been previously advocated by several authors
[13, 14, 21, 22, 23, 24]. In fact, many have recognized the bene�ts of mixed elements, but have
nevertheless advocated the use of simplicial meshes (using tetrahedral elements only), due
to the homogeneity in data-structures and added simplicity such meshes provide. The main
contribution of this paper is therefore to demonstrate how a solution procedure for mixed
element meshes may be devised which retains the properties of homogeneity and simplicity
coupled with rapid convergence and simple parallelization.

In the following section, it will be shown how a single edge-based data-structure can be
employed to construct the discretization of the Euler equations on meshes of mixed hexa-
hedra, prisms, pyramids and tetrahedra. The use of an agglomeration multigrid approach
for e�ciently solving the discrete equations is then outlined in section 3, and several invis-
cid 
ow calculations which illustrate the e�ciency of this approach are given in section 4.
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The extension of this methodology to the Navier-Stokes equations is described in section
5. An automatic algorithm for reducing the complexity of unstructured meshes by merging
simplicial elements into other types of elements is then described in section 6. Finally, two
and three dimensional examples of viscous 
ow computations on hybrid meshes are given in
section 7.

2 Inviscid Discretization

The basic discretization for the inviscid 
ow terms are formed using a central di�erence
�nite-volume scheme with added arti�cial dissipation. For tetrahedral elements, this can
also be formulated as a Galerkin �nite-element scheme. Both �nite-volume and �nite-element
schemes on tetrahedral meshes result in the same nearest neighbor stencil. Since all nearest
neighbors are joined to the vertex under consideration by an edge, the stencil can be expressed
using an edge-based data-structure. For hexahedral elements, the �nite-volume and �nite-
element discretizations are no longer equivalent. The �nite-element formulation results in a
27 point stencil, involving all corner points of the 8 hexahedra which touch the considered
vertex. This type of stencil cannot be represented by an edge based data-structure, since
all points in the stencil are not linked to the considered vertex by an edge. The �nite-
volume discretization, where the control-volume is constructed by joining the centroids of
all 8 hexahedra which touch the considered vertex, results in a 7 point stencil, where all
the points of the stencil are located on edges emanating from the considered vertex, as
shown in Figure 1. This type of discretization can be represented by the same edge-based
data-structure employed for the tetrahedral element discretization.

We therefore employ a �nite-volume/element discretization on tetrahedral elements and
a �nite-volume discretization on hexahedral and other types of elements (prisms and pyra-
mids). The discretization across the entire mesh is represented by a single edge-based data-
structure. This type of construction has previously been proposed by several authors (see
[21, 22] for example).

3 Multigrid Technique

Once the governing 
ow equations have been discretized in space, they form a set of coupled
ordinary di�erential equations which must be integrated in time to obtain the steady-state
solution. An explicit multi-stage Runge-Kutta time-stepping scheme is employed to advance
these equations in time. For high resolution meshes, simple explicit schemes of this type
yield very slow convergence, and result in ine�cient solution schemes.

An agglomeration multigrid technique is therefore employed to accelerate convergence to
steady-state [7, 8, 9]. The idea behind agglomeration multigrid is to construct coarse grid
levels automatically from the �ne grid by fusing or agglomerating �ne grid control volumes
together. The agglomerated coarse grid control volumes become large polygons (polyhedra
in 3D) and require a rediscretization of the governing equations. However, since the coarse
grid control volumes may have arbitrary polygonal shapes, the type of elements constituting
the �ne grid is irrelevant. Agglomeration multigrid can therefore be applied as easily to
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structured and block structured grids, as to tetrahedral unstructured and mixed element
meshes.

Agglomeration multigrid can also be interpreted as an algebraic multigrid technique for
sparse matrices. In fact, the algorithm only requires as input a sparse matrix, which is usually
given in the form of a weighted graph, i.e. vertices and edge-based coe�cients, where the
edge coe�cients represent the non-zeros of a sparse matrix. The agglomeration procedure
can then be viewed as a technique for eliminating certain vertices, and obtain a new smaller
or coarser problem on the remaining subset of vertices. The equations to be solved on this
new coarser level can be entirely derived by a projection of the �ne grid matrix operator,
(i.e. by summation of the constituent �ne grid equations within an agglomerated cell), and
thus rediscretization of the governing equations on the coarse levels is not required. The
structure or character of the �ne grid which generates the equations to be solved is therefore
irrelevant in the agglomeration multigrid approach. This may not necessarily be true for
more traditional multigrid strategies, where coarse mesh levels are explicitly constructed.
For example, for mixed-element meshes it remains unclear whether regions of the domain
must contain similar type elements on the coarse levels as on the �ne mesh, when employing
an overset-mesh multigrid strategy.

The agglomeration procedure is accomplished by using a greedy-type frontal algorithm.
A priority queue is maintained, which constitutes the front, and new vertices incident to the
front are picked to initiate a local agglomeration of their neighbors. Each set of agglomerated
control volumes is placed behind the front, and the process is repeated until the entire domain
is covered.

In order to maintain favorable overall complexity of the multigrid cycle, each coarser
level should contain approximately 8 times fewer (4 times fewer in 2D) vertices and edges
than the previous level. The speci�c algorithm described in [7] roughly achieves such results
on tetrahedral meshes by deriving maximal independent sets, but fails to produce adequate
reductions in coarse level complexity for non-simplicial meshes. This is a result of the sparser
graphs associated with such meshes; a hexahedral mesh, for example, contains less than half
the number of edges associated with the tetrahedralization of the same point set. Therefore,
the algorithm is modi�ed as described below.

At every step of the agglomeration procedure, having picked a seed vertex (vertex that
will be retained), the modi�ed algorithm for agglomeration in 2D/3D consists of the following
steps:

1. Form a list of neighbors not already agglomerated.

2. Agglomerate up to a maximum of 2 (3 in 3D) available neighbors from the list.

3. Augment the list by adding the neighboring vertices of the agglomerated vertex.

4. Determine a vertex from the list that is incident to at least two vertices already agglom-
erated into the present coarse grid control volume. Agglomerate the control volume
associated with this vertex.

5. If the number of agglomerated vertices is fewer than 3 (7 in 3D) go to Step 3.
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The central idea is to generate groups of agglomerated vertices which are as highly inter-
connected as possible. The resulting algorithm is applicable to simplicial and nonsimplicial
grids and yields favorable coarse grid complexities.

4 Inviscid Results

In order to illustrate the 
exibility and e�ciency of the current discretization and multigrid
approach, and to demonstrate the reduction in complexity a�orded by non-simplicial meshes,
three dimensional inviscid 
ow over a NACA 0012 wing has been computed using a fully
tetrahedral mesh, a fully prismatic mesh, and a fully hexahedral mesh. All three meshes
are constructed by stacking a two-dimensional triangular or quadrilateral O-mesh in the
spanwise direction. A straightforward stacking of quadrilaterals yields a hexahedral mesh,
while stacking of triangles yields a prismatic mesh. The tetrahedral mesh is then obtained
by subdividing each prism into three tetrahedra. The three meshes are based on the same
set of vertices, but di�er in the connectivity of the vertices. The three meshes are depicted
in Figure 2. They each contain 40,000 points. While the tetrahedral mesh contains 267,328
edges, the prismatic mesh contains 155,200 edges, and the hexahedral mesh contains only
116,800 edges.

The computed solution on each of the three meshes is depicted in Figure 3, as a set of
Mach contours on the surface. The freestream Mach number is 0.8 and the incidence is
1.25 degrees for this case. The familiar strong upper shock and weak lower shock pattern is
obtained. Figure 4 illustrates the multigrid convergence rate achieved for this case on each
of the three meshes. The convergence rate in terms of multigrid cycles is almost identical
for each of the three meshes, indicating the agglomeration algorithm performs equally well
on meshes with elements other than tetrahedra. When these convergence rates are plotted
in terms of cpu seconds in Figure 5, the hexahedral mesh result is seen to incur less than
half the cost of the tetrahedral mesh result. Furthermore, the prismatic mesh result is only
slightly more expensive than the hexahedral mesh result. These gains in e�ciency for the
non-simplicial meshes are a direct result of the lower number of edges on these meshes (and
their coarse mesh multigrid counterparts) when compared to the tetrahedral mesh. A total
of 4.4 Mwords of memorywas required for the tetrahedral mesh case, while the prismatic and
hexahedral mesh cases required 3.6 Mwords and 3.2 Mwords respectively. Since there are a
substantial number of vertex-based arrays, these memory decreases are less than proportional
to the decrease in the number of edges. (However, in viscous 
ow cases, the relative memory
gains are higher since more edge-based arrays are required).

An additional advantage of the current approach is the ability to handle traditional block-
structured meshes. For any Co continuous block structured mesh, given a list of points in each
block, and the inter-block connectivity, it is a simple matter to convert this information into
a list of unstructured hexahedra. The 
ow equations can then be discretized and solved on
the hexahedra as described previously. Since all mesh levels are treated as unstructured data-
sets, the agglomeration procedure is unconstrained by the macro-structure of the original
block-structured mesh, and the familiar problem of requiring grid point distributions which
are powers of 2 in each block in each direction is avoided. This is especially appealing for
block-structured grids which contain a large number of blocks, such as those generated by
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current automatic blocking techniques. As an example, the inviscid 
ow over an ONERA
M6 wing has been computed on a block-structured grid. The grid was provided by the
P. Eiseman of the Program Development Corporation [25], and contains a total of 129,187
points and 141 blocks.

The mesh is illustrated in Figure 6. The freestream Mach number and the 
ow incidence
for this case are 0.84 and 3.06 degrees respectively. The computed solution, in terms of Mach
contours on the surface, is shown in Figure 7. The convergence rate of the agglomeration
multigrid procedure for this case is depicted in Figure 8. In 100 cycles, the residuals are
reduced by 5.5 orders of magnitude. This type of convergence is consistent with that obtained
in the previous examples, as well as with that obtained by the same algorithm on fully
tetrahedral meshes [7], and by structured grid multigrid solvers [26]. This calculation requires
a total of 5 minutes of CPU time and 10 Mwords of memory on the CRAY C90 machine.

5 Extension to the Navier Stokes Equations

5.1 Discretization of Viscous Terms

On tetrahedral meshes, the viscous terms for the full Navier-Stokes equations are discretized
using a �nite-element Galerkin approximation. This discretization results in a nearest neigh-
bor stencil, and can be represented using an edge-based data-structure [2, 27]. Furthermore,
the resulting edge coe�cients are symmetric and thus only 6 additional coe�cients per edge
are required for the viscous terms.

For hexahedral meshes, the discretization of the full Navier-Stokes terms invariably leads
to a 27 point stencil involving points which are not directly connected by a mesh edge to
the vertex under consideration. Our approach in this case is to resort to the thin-layer form
of the Navier-Stokes equations. By neglecting the cross-di�usion terms in the full Navier-
Stokes equations, and resorting to a thin-layer description in each coordinate direction of the
hexahedra, a nearest neighbor stencil is recovered, and the edge-based data-structure may be
used to represent this discretization. A similar strategy can be employed for prismatic and
pyramidal elements. This strategy amounts to replacing the di�usion terms by a Laplacian
operator. This can be achieved using one additional coe�cient per edge and does not require
any information about the direction and forming element type of each edge. It is important,
however, to realize that this technique amounts to more than just neglecting the cross-
di�usion terms, and is only strictly valid in the presence of the thin-layer assumption. For
example, the full di�usion terms in two-dimensions for the x-momentum equation read:

4

3
uxx + uyy +

1

3
uxy (1)

while present approach yields

uxx + uyy (2)

Only under the condition :

uxx � uyy uxy � uyy (3)
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which amounts to the thin-layer assumption, is the present approach justi�ed.
The use of the full viscous terms in certain regions of the domain and the thin-layer

terms in other regions of the domain results in the solution of di�erent governing equations in
various regions of the domain, depending on the types of elements employed in the mesh. The
justi�cation for such an approach is based on employing elements other than tetrahedra only
in regions of high mesh stretching, or in regions where viscous e�ects are negligible. When
high mesh stretching is present in one or more directions, the 
ow gradients in the direction
of low resolution (e.g. the streamwise direction of a boundary layer) are usually known to
be small and thus a thin-layer approximation is justi�ed. In the event these gradients are
larger than anticipated, they cannot be accurately resolved due to the low mesh resolution
in this direction, thus the omission of the cross-di�usion terms is still justi�ed.

Another possibility is to form the full viscous terms by �rst computing the 
ow gradi-
ents at the vertices of the mesh by integrating around the boundary of the inviscid control
volume associated with each vertex, and then repeating this operation, integrating the gra-
dients themselves about each control volume, in order to construct a second di�erence. The
di�culty with such an approach is that it corresponds to the use of a stencil 2h for the vis-
cous terms, where h is a measure of the cell size, which results in lower accuracy. In regions
where the thin-layer assumption is valid, the present approach can be expected to be more
accurate.

One can devise schemes which combine both approaches, where the main thin-layer
terms are computed using the present approach, and additional cross-terms and streamwise
corrections are added using the repeated gradient integration approach. However, in regions
where the thin-layer assumption is not valid, it may be simpler to subdivide the mesh
elements into tetrahedra.

5.2 Turbulence Model

The single �eld-equation turbulence model of Spalart-Allmaras [28] is employed for model-
ing turbulence e�ects. This model consists of a single transport equation with convective,
di�usive and source terms. The convective terms are discretized using a �rst-order upwind
method, which results in a nearest neighbor stencil on meshes of mixed elements and may
be represented by the edge-based data-structure. The particular formulation of the di�usion
terms in the model contains no cross-terms, and is thus easily represented as a nearest neigh-
bor stencil by the edge-based data-structure for mixed element meshes. The source terms
require only point-wise information and are also easily constructed on meshes of arbitrary
elements. The turbulence model is solved decoupled from the 
ow equations using a Jacobi
iteration. Convergence to steady-state of the turbulence equation is accelerated using the
multigrid algorithm in an analogous manner to the 
ow equations.

6 Mesh Merging Algorithm

While the present solution strategy enables the use of various types of meshes, such as block
structured, hybrid and fully unstructured meshes, the main motivation for this approach is
to reduce the complexity associated with unstructured grid solutions. Since the majority
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of unstructured meshes are fully tetrahedral, and many tasks such as mesh adaptation and
solution visualization are most easily performed on fully tetrahedral meshes, a preprocessing
algorithm which merges simplicial elements into more complex element types prior to the 
ow
solution phase enables a reduction in the associated solution overheads, without complicating
the implementation of other such tasks. In two dimensions, pairs of neighboring triangles
may be merged into quadrilaterals by removing their common diagonal edge. Since a perfect
quadrilateral (i.e. a rectangle) contains four co-circular points, neighboring pairs of triangles
which are formed by four nearly co-circular points may be 
agged as candidates for merging.
The resulting diagonal edges to be removed can be identi�ed by constructing the Voronoi
dual of the mesh. This dual mesh is obtained by drawing straight-line segments between the
circumcenters of neighboring triangles, as shown in Figure 9.

Each mesh edge is associated with a perpendicular dual edge. When two triangles are
co-circular, the dual edge of their common diagonal becomes vanishingly small. Candidate
edges for removal may therefore be identi�ed by comparing the length of their Voronoi dual
edge with the perimeter of the Voronoi control volume about each of the edge end-points.
Such edges are then removed if they represent the smallest dual edge of one of their forming
triangles, and if neither triangle has already been merged into a quadrilateral.

This procedure is closely related to the edge removal technique described in [29], as well as
to the containment dual control-volume approach advocated in [20] in order to de-emphasize
the contributions of diagonal edges in a �nite-volume scheme. (In fact, the containment dual
may be substituted for the Voronoi dual in the present algorithm.)

As an example, the above algorithm is applied to a triangular unstructured mesh gener-
ated by the advancing layers method [16]. The original mesh, a partially merged version, and
a fully merged version of this mesh are depicted in Figure 10. The partially merged mesh
is obtained by employing a stringent criterion on the relative size of the dual edge, which
results in merging only in regions of high grid-stretching where the elements are almost right
angle triangles. On the other hand, for the fully merged mesh, a more liberal criterion results
in a 30 % reduction in the number of edges, which is very close to the maximum possible for
the two dimensional case.

In three dimensions, tetrahedra may be combined into prisms, pyramids or hexahedra.
For a mesh of N vertices, a tetrahedral mesh contains approximately 7N edges, a hexahedral
mesh 3N edges, and a prismatic mesh 4N edges. Thus, the majority of the reduction in com-
plexity is obtained in going from tetrahedra to prisms. For simplicity, the three dimensional
algorithm only seeks to construct prismatic elements in regions of high grid stretching. This
is achieved by searching through neighboring element lists, and identifying groups of three
nearly co-circular high aspect ratio tetrahedra which form a well shaped prism. After the
prismatic elements have been formed, a subset of these may be re-subdivided in order to
ensure compatible quadrilateral and triangular face patterns between neighboring tetrahedra
and prisms.

7 Viscous Flow Results

As a two-dimensional example, the viscous turbulent 
ow over a three-element airfoil has
been computed on the three meshes of Figure 10. All three solutions are in good agreement
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with each other, as well as with the corresponding experimental data taken from [30], as
illustrated by the surface pressure plots in Figure 11. The convergence rates for these three
cases are compared in Figure 12. The agglomeration multigrid performs equally well for
the triangular mesh as for the mixed quadrilateral/triangular meshes, achieving a residual
reduction of 5 orders of magnitude over 400 cycles. While this is somewhat slower than the
convergence rates previously displayed for the inviscid cases, it is nevertheless representative
of the performance of multigrid methods for high-Reynolds number viscous 
ows, where
considerable grid stretching is present. The reduction of complexity in two dimensions is,
however, not as impressive as in three dimensions, since a maximum of 33 % of the edges
may be removed in merging triangles to quadrilaterals.

As a three dimensional example, a hybrid mesh has been constructed over a partial-span

ap geometry. In a �rst step, a fully tetrahedral unstructured mesh was constructed over
the center portion of the wing, which contains the principal geometric complexities such as
the junction between the 
apped and un
apped span of the wing. This portion of the mesh
contains 553,401 points, and 3.1 million tetrahedra, and was generated by S. Pirzadeh using
the advancing layers technique [16]. The normal spacing at the airfoil surfaces is 10�5 chords.

The three-dimensional mesh merging algorithm was then employed to transform the
unstructured center span mesh into a mixed tetrahedral and prismatic mesh. Almost half
of the tetrahedra were merged into prisms, resulting in a total of 489,000 prisms, and 1.7
million remaining tetrahedra in the center span mesh. The merging operation was con�ned
to the high-aspect ratio tetrahedra in the near wall region, as illustrated in Figure 13. Each
end of this mesh was then extruded in the spanwise direction, thus resulting in a mixture of
prisms and hexahedra in these regions.

The �nal mesh contains a total of 927,000 vertices, with 1.7 million tetrahedra, 1 million
prisms, and 112,500 hexahedra. A coarser but topologically similar mesh of 160,000 points
is depicted in Figure 13, illustrating the structure of the mesh away from the center span,
and near the airfoil surfaces. (The �ne mesh cannot be displayed e�ectively due to printing
resolution limitations). The �ne mesh contains a total of 4.4 million edges, whereas a tetra-
hedralization of the same point set would contain approximately 6.5 million edges. Figure 14
illustrates one of the coarse level agglomeration graphs produced by the multigrid algorithm.
The solution on the �ne mesh is depicted in Figure 15, in terms of Mach contours on the
wind-tunnel wall, and density contours on the wing surface. For this case, the freestream
Mach number is 0.2, the incidence is 10 degrees, and the Reynolds number is 3.7 million. The
convergence of the agglomeration multigrid algorithm is plotted in Figure 16, where a resid-
ual reduction of 3.5 orders of magnitude over 300 cycles is observed. This convergence rate is
similar to that achieved for viscous 
ows in two dimensions, as well as in three dimensions on
a fully tetrahedral mesh for this same geometry [9]. This computation required a total 135
MWords of memory and 8 CPU hours, which could be executed in about 50 wall clock min-
utes using all 16 processors of the CRAY C-90, but in a time sharing mode where 54% of the
machine was allocated to this speci�c job. This represents roughly a 30 % reduction in CPU
time and 20 % reduction in memory over what would be required on a fully tetrahedral mesh
of the same point set. Furthermore, the extrusion process enables a low spanwise resolution
at the end-walls of the wing, while maintaining the high chordwise resolution present in the
center span, and therefore reduces the required number of grid points for a given solution
accuracy. In Figure 17, the surface pressure distributions at several spanwise locations are
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compared with experimental data taken from [31], and with a calculation performed on a
fully tetrahedral mesh of 2.34 million points [9]. The two computational results are in close
agreement with the experimental data. Although the precise relative accuracy of these two
computations remains to be determined, it is noteworthy that the mixed element solution
was obtained at almost 1/3 the cost of the tetrahedral mesh solution of [9].

8 Conclusion

The use of nearest-neighbor stencils, an edge-based data-structure, and an agglomeration
multigrid technique, results in an e�cient solver which can operate on meshes of arbitrary
polyhedral cells. In the present work, we have restricted ourselves to meshes of tetrahedra,
prisms, pyramids, and hexahedra for simplicity. This approach enables the use of tetrahedral
unstructured meshes, hybrid meshes, and even block-structured meshes. When employed in
conjunction with a mesh-element merging algorithm, substantial savings in computational
memory and time can be achieved for a given unstructured tetrahedral mesh calculation.

A drawback of this approach is the need to resort to the thin-layer assumption in regions
where non-simplicial elements are employed, or to incur an accuracy degradation in the
viscous terms by resorting to a larger (2h) stencil.

An avenue for future work is to combine mesh adaptation and mesh merging operations
to obtain a more optimal distribution of mesh points, and to ensure a reduction in the mesh
complexity only in regions where the thin-layer assumption is justi�ed.
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Figure 1: Illustration of 7 point �nite-volume and 27 point �nite-element stencil and associ-
ated control-volumes for hexahedral mesh
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Figure 2: Hexahedral, Prismatic, and Tetra-
hedral Meshes about NACA 0012 Wing
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Figure 3: Computed Mach Contours for Flow
over NACA0012 Wing on Hexahedral, Pris-
matic, and Tetrahedral Meshes
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Figure 4: Convergence Rate of Various Meshes in Terms of Multigrid Cycles
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Figure 5: Convergence Rate of Various Meshes in Terms of CPU Time
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Figure 6: Block Structured Mesh about ONERA M6 Wing
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Figure 7: Computed Mach Contours on ONERA M6 Wing (Mach = 0.84, Incidence = 3.06
degrees)
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Figure 8: Convergence Rate of Agglomeration Multigrid on Multiblock Mesh for ONERA
M6 Wing
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Figure 9: Voronoi dual associated with triangular mesh
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Figure 10: Fully triangular, partially, and fully merged meshes using two-dimensional mesh
merging algorithm for three-element airfoil geometry
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Figure 11: Comparison of Computed and Experimental Surface Pressures for Three-Element
Airfoil Geometry
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Figure 12: Convergence Rates in Terms of Multigrid Cycles for Triangular Mesh and Merged
Meshes about Three-Element Airfoil Geometry
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Figure 13: Mixed element mesh showing detail in near wall region for partial-span 
ap
geometry
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Figure 14: Second level agglomeration graph for above mesh
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Figure 15: Computed solution displayed as Mach contours on wind-tunnel wall and pressure
contours on airfoil surfaces for partial-span 
ap geometry

22



    0   100   200   300   400   500   600

MULTIGRID CYCLES

 -
12

.0
0

 -
10

.0
0

  -
8.

00
  -

6.
00

  -
4.

00
  -

2.
00

   
0.

00
   

2.
00

L
O

G
 (

E
R

R
O

R
)

Figure 16: Convergence Rate of for Viscous Flow over Partial Span Flap on Fine Mixed
Element Mesh
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Figure 17: Comparison of Calculated and Experimental Surface Pressures for Partial Span
Flap Geometry
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